Lipid Characterization in Genetically Engineered *Yarrowia lipolytica* by Desorption Electrospray Ionization Mass Spectrometry

John Q. Lin\(^a\), Lauren T. Cordova\(^b\), Hal S. Alper\(^b\), and Livia S. Eberlin\(^a\)

\(^a\)Department of Chemistry, The University of Texas at Austin, Austin, Texas \(^b\)McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas

OVERVIEW

- The lipid profiles of genetically engineered *Yarrowia lipolytica* strains were analyzed using desorption electrospray ionization mass spectrometry (DESI-MS).
- Characterization of different *Yarrowia lipolytica* strains may allow for the design of a refined and sustainable oleochemical platform targeting the production of specific lipids with industrial relevance.

INTRODUCTION

- Microbial biosynthesis of oils and lipids represents a sustainable source for industrial chemicals precursors. \(^1\) Petroleum sources are unsustainable and raise ethical concerns.
- Engineered *Yarrowia lipolytica* cells can contain greater than 90% lipid composition and titers up to 40 g L\(^{-1}\) lipids. \(^2\)
- The lipid changes resulting from the altered metabolism in the engineered *Yarrowia lipolytica* cells are not fully characterized, although changes in fatty acid composition are known to occur.
- Characterization of lipid changes that occur in combination with increased lipid titers can allow targeted development of a sustainable platform.
- Here, we used DESI-MS to investigate the lipid profiles of two genetically engineered *Yarrowia lipolytica* yeast strains compared to the base strain to characterize the lipid composition and better understand the altered metabolism.

METHODS

Yarrowia lipolytica samples
- Three *Yarrowia lipolytica* strains were cultured in triplicate and centrifuged down into cell pellets.
- Samples were deposited in duplicate onto a PTFE printed glass slide and allowed to dry for 30 minutes.

DESI-MS Analysis
- A LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, CA) coupled to a commercial DESI-MS platform (Prosciota Inc., IN) was used. In the negative ion mode, DESI-MS was performed with dimethylformamide and acetone (ACN) as the solvent system; in the positive mode, pure ACN was the solvent system. Tandem MS and high mass accuracy measurements were used to identify lipid molecular ions.

Statistical analysis
- Spectra from each well were averaged and normalized by total ion current (TIC).
- Principle Component Analysis (PCA) and Significant Analysis of Metarays (SAM) were used to analyze the data and identify molecular ions of interest in the engineered *Yarrowia lipolytica* strains.
- PCA analysis of DESI-MS data allowed for identification of ions that describe the most variance.
- SAM analysis of DESI-MS data allowed directed comparison of ions of statistical interest and upregulation or downregulation in each strain.

SAM Analysis
- SAM analysis reveals hydroxy fatty acids that are upregulated in E26 and L36 and po1f.

RESULTS

Example of MS/MS of Hydroxy Fatty Acids
- **Positive DESI-MS**
 - Spectra of *Yarrowia lipolytica* in positive ion mode
 - Positive ion mode shows clear differences in the m/z 850-850 region likely consisting of triacylglycerols (TAGs).

Negative DESI-MS
- **Spectra of *Yarrowia lipolytica* in negative ion mode**
 - Positive DESI-MS
 - PCA Plot
 - PCA shows clear separation between base strain (po1f) from engineered strains (E26 and L36).
 - PCA analysis suggests batch variation between triplicates of base strain po1f is substantial.

REFERENCES

CONCLUDING REMARKS

- DESI-MS allows characterization of lipid changes between genetically engineered strains of *Yarrowia lipolytica*.
- Differences in altered metabolism can be revealed even between strains with similar lipid titers.
- Positive ion mode data analysis will be carried out to characterize lipid species in each strain. Positive and negative ion mode analyses of cell supernatant will also be pursued.
- Ultimately, we expect this information to aid in the development of a refined and sustainable oleochemical platform.

ACKNOWLEDGMENTS

Travel was supported by the AASM Undergraduate Student Travel Award. The authors would like to thank Shirley Li, Maria Sara, Claire Fader, Alena Berumen, Jiajia Zhang, and Jonathan Young for assistance with experiments, data analysis, and helpful discussions.